
1. Proof of Generalized CRT

I will begin with a definition of a commutative ring with unity.
Don’t worry about the name.

Definition 0.1. A ring is a set R with two binary operations +
and × with a few conditions:

(1) There exists a zero element 0 ∈ R so that for all a ∈ R,
a + 0 = a. (This is just zero in the integers).

(2) For any a, b ∈ R, a + b ∈ R (adding two things give you an
object in the ring).

(3) FOr any a, b ∈ R, we get a + b = b + a.
(4) For any a ∈ R, there is a b ∈ R so that a + b = 0. We write b

as −a (there exists negative elements i.e. additive inverses).
(5) Addition is associative. That is, (a + b) + c = a + (b + c).
(6) For any a, b ∈ R, a×b ∈ R (multiplication gives you something

in the ring) (we will omit × if it is obvious).
(7) For a, b, c ∈ R, we get a(b + c) = ab + ac (multiplication

distrbutes over addition).

For a commutative ring with unit, we add two conditions.

(1) * For any a, b ∈ R, we get ab = ba (the commutative part in
commutative ring).

(2) * There exists a 1 ∈ R so that a × 1 = 1 × a (the unity part
of a ring).

Example 0.2. Notice that Z, the integers, form a commutative
ring with unity. It has 0, 1 ∈ Z. Also, all of the other conditions make
sense!

Example 0.3. We will write Z/nZ to be the integers modulo n.
For example, Z/3Z is just the set {0̄, 1̄, 2̄}. Addition in this follows

your usual understanding of modular arithmetic.

0̄ + 2̄ = 2̄, 2̄ + 2̄ = 1̄, 2̄ + 1̄ = 0̄.

Now, we come to something you are less familiar with.

Definition 0.4. A subset I ⊆ R of a ring is called an ideal if it
satisfies certain properties.

(1) For any a, b ∈ I, a + b ∈ I.
(2) For any r ∈ R and any a ∈ I, we have ra ∈ I.

Example 0.5. The even numbers 2Z form an ideal in Z.
Notice that if we take any number in 2Z, say 8 and 16, we get

8 + 16 = 24 which is also in 2Z.
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If 3 ∈ Z and 2 ∈ 2Z, we get 2× 3 = 6 ∈ 2Z.
More generally, if can be seen that 2Z is an ideal!

Now, we define modulo of a ring by an ideal.

Definition 0.6. If I is an ideal of a commutative ring with unity
R, R/I is the ring where every element of R that is in I is set to 0.
(This is informal).

Example 0.7. Consider the example Z/3Z.
We know that 9 modulo 3 is 0. This is because 9 ∈ 3Z. What

about 5? Well, 5 = 2 + 3 and 3 ∈ 3Z. This forces 5 equal to 2 modulo
3 inside Z/3Z.

This motivates the next definition!

Definition 0.8. We get a map R→ R/I which sends elements of
R in the obvious way to elements of R/I.

Example 0.9. We get a mapping Z→ Z/8Z defined by sending a
to a (mod 8).

Definition 0.10. A ring morphism f : R → S between rings R
and S is a just a mapping preserving the ring structure. That is,

(1) f(a + b) = f(a) + f(b)
(2) f(a× b) = f(a)× f(b).

Example 0.11. Notice that f : Z→ Z/8Z preserves the ring struc-
ture!

For example, f(8 + 3) = f(11) = 3, but f(8) + f(3) = 0 + 3 = 3.
Also, f(8× 9) = f(72) = 0 and f(8)× f(9) = 0× 1 = 0.

Definition 0.12. Two ideals I and J of a ring is said to be co-
maximal or relatively prime if I + J is the whole ring.

Note: I + J = {i + j|i ∈ I, j ∈ J}.

Example 0.13. An obvious example will be in the case of the inte-
gers Z. The ideals 2Z and 5Z are comaximal (or 2 and 5 are relatively
prime).

This is because 1 = (−2)2 + 5 and (−2)2 ∈ 2Z and 5 ∈ 5Z. Now,
this implies that 1 ∈ 2Z + 5Z. Now, we can multiply 1 by anything in
Z. For example, 9× 1. This implies that

9 = 9× 1 = 9((−2)2 + 5) = (−18)2 + 45.

So, 9 ∈ 2Z + 5Z. Since we can really just multiply by anything a and
get a ∈ 2Z + 5Z, we conclude that 2Z + 5Z = Z!
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I am sorry this last part, but we are going to do this part in with a
few more definitions.

Definition 0.14. If R and S are rings, R× S = {(r, s)|r ∈ R, s ∈
S} is a ring.

Example 0.15. Take Z and Z. Then Z×Z is just the set of ordered
pairs! We define addition and multiplication component wise.

For example, (2, 3) + (4, 9) = (6, 12) and (2, 2) + (3, 7) = (6, 14).

Definition 0.16. If f : R → S, then ker f is called the kernel of
the ring morphism. It is defined as “everything in R that is sent to 0
in S”. More formally

ker f = {r ∈ R|f(r) = 0}.

Also, ker f is an ideal of R! Verify the conditions.

Example 0.17. Look at f : Z→ Z/8Z. What is the kernel? What
is sent to zero?

It is everything in 8Z!

Now, you are going to have to take some faith in me when I make
this claim.

Theorem 0.18. If f : R → S is a surjective ring morphism, then
R is the same as S/ ker f . (Surjective means that S is small enough so
that for every s ∈ S there is a r ∈ R so that f(r) = s).

More formally, R is isomorphic to S/ ker f (isomorphic/isomorphism
just means there is a ring morphisms so that R and S/ ker f look es-
sentially the same i.e. have the same ring structure).

Example 0.19. Again, look at f : Z→ Z/8Z. This surjective. For
example, if we have 3 ∈ Z/8Z, then 11 ∈ Z is such that f(11) = 3.

The kernel ker f was conclude to be just 8Z. So, applying the
previous theorem, R = Z and ker f = 8Z, we actually have Z/8Z is
the same as Z/8Z!

Theorem 0.20 (Number Theoretic CRT Simple Case). If mZ and
nZ are ideals of Z, mZ + nZ = Z i.e. are comaximal, then we get an
isomorphism

Z/(mnZ)→ Z/mZ× Z/nZ.

Proof. My proof here is a bit informal.
We have define f : Z→ Z/mZ× Z/nZ as follows,

a 7→ (a (mod m), a (mod n)).
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This can be checked to be a ring morphism and that it is well-defined
i.e. if a = b, then the get mapped to the same thing.

We want to apply Theorem 0.18 to get the isomorphism. So, we
need to figure out what the kernel is. What element gets sent to
(0 (mod m), a (mod n)) = (0, 0)? This comes down to solving the
congruence

z ≡ 0 mod m, and z ≡ 0 mod n

for z. Well, clearly, z has to be a multiple of both m and n! But a
multiple of both m and n is an element of both mZ and nZ. That is,
z must be in mZ ∩ nZ! Also, nZ ∩mZ = nmZ.

So, by Theorem 0.18, we get

Z/(mnZ) ∼= Z/mZ× Z/nZ
an isomorphism! �

Remark: You might find it strange I didn’t use the comaximal con-
dition mZ + nZ = Z in the proof! It is actually very subtle. We know
we need the condition since if not, we get an easy counter example.

Take 2Z and 4Z. Obviously, 2Z + 4Z = 2Z so they are not comax-
imal. Also, 2Z ∩ 4Z = 2Z. However, it is obvious that Z/2Z is not eh
same thing as Z/2Z× Z/4Z!

The subtlety is when I said nZ∩mZ = nmZ! If two ideals I and J
are not comaximal, we cannot conclude that I ∩ J = IJ . At best, we
get I ∩ J ⊆ IJ !

Theorem 0.21. Knowing the Number Theoretic Simple Case, we
can quickly get the general case!

If n1Z, . . . , njZ are ideals of Z so that they are pairwise comaximal
i.e. niZ + nkZ = Z for any ni, nk, then we get an isomorphism

Z/(n1n2 . . . njZ)→ Z/n1Z× Z/n2Z× · · · × Z/njZ.

Remark: This gives you the solving of the congruence x ≡ 122 (mod 233),
x ≡ 141 (mod 233), and x ≡ 9 (mod 199).

Also, without really doing much more work, we come to the gen-
eral case in Commutative Ring Theory.

Theorem 0.22. If I1, . . . , In are ideals of a commutative ring with
unity R, and the Ii’s are pairwise comaximal, we get an isomorphism

R/(I1I2 . . . In) ∼= R/I1 ×R/I2 × · · · ×R/In.
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